Characteristic Polynomial Hung-yi Lee

Outline

- Last lecture:
 - Given eigenvalues, we know how to find eigenvectors or eigenspaces
 - Check eigenvalues
- This lecture: How to find eigenvalues?
- Reference: Textbook 5.2

A scalar *t* is an eigenvalue of A

A scalar t is an eigenvalue of A $\leftarrow det(A - tI_n) = 0$

A is the standard matrix of linear operator T

 $det(A - tI_n)$: Characteristic polynomial of A linear operator T

 $det(A - tI_n) = 0$: Characteristic equation of A linear operator T

Eigenvalues are the roots of characteristic polynomial or solutions of characteristic equation.

• Example 1: Find the eigenvalues of $A = \begin{vmatrix} -4 & -3 \\ 3 & 6 \end{vmatrix}$

A scalar t is an eigenvalue of A $det(A - tI_n) = 0$

$$A - tI_2 = \begin{bmatrix} -4 - t & -3 \\ 3 & 6 - t \end{bmatrix}$$

 $\det(A - tI_2)$

=0

The eigenvalues of A are -3 or 5.

- Example 1: Find the eigenvalues of $A = \begin{bmatrix} -4 & -3 \\ 3 & 6 \end{bmatrix}$

The eigenvalues of A are -3 or 5.

Eigenspace of -3

$$Ax = -3x \quad \blacksquare \quad (A+3I)x = 0$$

find the solution

Eigenspace of 5

$$Ax = 5x \quad \blacksquare \quad (A - 5I)x = 0$$

find the solution

• Example 2: find the eigenvalues of linear operator

$$T\left(\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}\right) = \begin{bmatrix} -x_{1} \\ 2x_{1} - x_{2} - x_{3} \\ -x_{3} \end{bmatrix} \xrightarrow{\bullet} A = \begin{bmatrix} -1 & 0 & 0 \\ 2 & -1 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

matrix
A scalar *t* is an eigenvalue of A $\longrightarrow det(A - tI_{n}) = 0$
$$A - tI_{n} = \begin{bmatrix} -1 - t & 0 & 0 \\ 2 & -1 - t & -1 \\ 0 & 0 & -1 - t \end{bmatrix}$$

$$det(A - tI_{n}) = (-1 - t)^{3}$$

• Example 3: linear operator on \mathscr{R}^2 that rotates a vector by 90°

A scalar t is an eigenvalue of A $det(A - tI_n) = 0$

standard matrix of the 90°-rotation:

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$\det\left(\left[\begin{array}{rrr} 0 & -1\\ 1 & 0 \end{array}\right] - tI_2\right)$$

No eigenvalues, no eigenvectors

- In general, a matrix A and RREF of A have different characteristic polynomials. Different Eigenvalues
- Similar matrices have the same characteristic polynomials
 The same Eigenvalues

$$det(B - tI) = det(P^{-1}AP - P^{-1}(tI)P)$$
 $B = P^{-1}AP$

$$= det(P^{-1}(A - tI)AP)$$

 $= det(P^{-1})det(A - tI)det(P)$

$$= \left(\frac{1}{det(P)}\right) det(A - tI)det(P) = det(A - tI)$$

- Question: What is the order of the characteristic polynomial of an *n*×*n* matrix *A*?
 - The characteristic polynomial of an *n*×*n* matrix is indeed a polynomial with degree *n*
 - Consider det($A tI_n$)
- Question: What is the number of eigenvalues of an n×n matrix A?
 - Fact: An n x n matrix A have less than or equal to n eigenvalues
 - Consider complex roots and multiple roots

• If nxn matrix A has n eigenvalues (<u>including</u> <u>multiple roots</u>)

• The eigenvalues of an upper triangular matrix are its diagonal entries.

Characteristic Polynomial:

$$\begin{bmatrix} a & * & * \\ 0 & b & * \\ 0 & 0 & c \end{bmatrix} \qquad det \begin{bmatrix} a - t & * & * \\ 0 & b - t & * \\ 0 & 0 & c - t \end{bmatrix} \\ = (a - t)(b - t)(c - t)$$

The determinant of an upper triangular matrix is the product of its diagonal entries.

Characteristic Polynomial v.s. Eigenspace

• Characteristic polynomial of A is

Characteristic Polynomial v.s. Eigenspace

• Example 1:

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

characteristic polynomials:

```
-(t+1)^2(t-3)
```

Eigenvalue -1

Multiplicity of "-1" is 2 Dim of eigenspace is 1 or 2

Dim = 2

Eigenvalue 3

Multiplicity of "3" is 1 Dim of eigenspace must be 1

Characteristic Polynomial v.s. Eigenspace

• Example 2:

$$B = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$
 c

characteristic polynomials:

```
-(t+1)(t-3)^2
```

Eigenvalue -1

Multiplicity of "-1" is 1 Dim of eigenspace must be 1

Eigenvalue 3

Multiplicity of "3" is 2

Dim of eigenspace is 1 or 2

Dim = 2

Characteristic Polynomial v.s. Eigenspace

• Example 3:

$$C = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$
 characteristic polynomials:
-(t+1)(t-3)²

Eigenvalue -1

Multiplicity of "-1" is 1 Dim of eigenspace must be 1

Eigenvalue 3

Multiplicity of "3" is 2 Dim of eigenspace is 1 or 2

Dim = 1

	Characteristic polynomial	Eigenvalues	Eigenspaces
$A = \left[\begin{array}{rrrr} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{array} \right]$	$-(t+1)^2(t-3)$	-1	2
		3 —	→ 1
$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$	$-(t+1)(t-3)^2$	-1	1
$B = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$		3 —	→ 2
$C = \left[\begin{array}{rrrr} -1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{array} \right]$	$-(t+1)(t-3)^2$	-1	→ 1
		3 ——	→ 1

Summary

• Characteristic polynomial of A is

Homework